
Model Development and Extraction from Neural Networks
Final Report

Brian G. Maddox
Ryanne Dolan

Open-File Report 2005-

U.S. Department of the Interior

U.S. Geological Survey

CONTENTS

CONTENTS..2
ILLUSTRATIONS..2
KEY WORDS..3
ABSTRACT..3
INTRODUCTION...4
BACKGROUND...4
METHOD AND TESTING..6

Development Tools..6
Data Collection...7
Modifications to SNNS..7
Results...12

DISCUSSION...13
FUTURE WORK..14
CONCLUSION...15
REFERENCES..17

ILLUSTRATIONS

Figure 1: Two Dimensional Representation...11
Figure 2: Three Dimensional Representation...11
Figure 3: Sample climate and tularemia clustering..12
Figure 4: Second group clustering..13

2

KEY WORDS

Neural networks model development extraction

ABSTRACT

Developing mathematical models of physical phenomena can become a complex task.
More and more data are being created with improved sensing devices, and more
demands are being placed on creating highly accurate models. Models with large
numbers of variables can be difficult for a researcher to develop due to the extreme
complexity involved. One way of trying to simplify this process is to use a neural network
to automatically train from the variables and deliver a mathematical model to the
researcher.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

3

INTRODUCTION

One problem with developing mathematical models of physical phenomena is the
complexity involved. These models can be comprised of large numbers of variables.
While there are techniques to determine which variables are dependent and
independent, this can be difficult and time consuming as the number of variables
increases. Additionally, a large number of variables might be left that have to be used to
create the final mathematical model of the phenomena. Dealing with these variables can
make it difficult for a researcher to develop a comprehensive model to be used for
modeling and predictive purposes.

To address this issue, it was theorized that a neural network could be used to train itself
on datasets from a specific phenomena and then extract a mathematical model based on
how the network trained. As neural networks normally are “black boxes”, this would
require researching how to change a neural network, and how to create a mathematical
model from it. Doing this would require a change to the traditional functionality of a
neural network to fully track the data flow. Once this is done, it was theorized that, at a
minimum, mathematical step functions could be generated that describe the model that
the network trained on.

To test this hypothesis, work was done with data from the Centers of Disease Control to
apply the theory to modeling the spread of tularemia, a disease caused by the bacterium
Francisella tularensis. This organism is a known pathogen and is listed as a possible
agent for use in a biological attack. The idea was to use the network to model the spread
of the disease to establish a baseline model. Non-natural occurrences of the disease
could then be identified and investigated as possible biological threats.

While the project was cut short due to funding issues, this final report will discuss some of
the discoveries made, the work that has been done, and future work that is needed to
complete the project. It is hoped that this project will someday be resurrected to
complete this research and evaluate the possible impact on the development of models
for physical phenomena.

BACKGROUND

The study of artificial intelligence uses computer technology to model thought,
knowledge, and intelligent behavior. The traditional models of intelligence follow two
basic paradigms, symbolism and connectionism. The former approach involves
manipulating symbols following a set of rules, and the latter involves forming connections
of various strengths between nodes. The trend in the past few decades has been toward
connectionism, as neurological research suggests that connectionist systems more
closely mimic the human brain.

4

The connectionist paradigm comes from two fundamental assumptions: that the best way
to achieve human-like intelligence is by mimicking the living brain, and that the brain
consists of millions of highly interconnected processing units called neurons. By studying
the interplay of neurons in living brains, scientists seeking strong artificial intelligence
hope to construct artificial systems that exhibit behavior similar to that of a human brain.

An early product of this research was the neural network, a type of artificial neuron
system. Various neural network models have emerged since the conception of the
archetypal perceptron networks pioneered by Hebb (1949). In his book The Organization
of Behavior, he proposed Hebb's rule which states “When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased.” (Hebb 1949). In other words, the connection
between two neurons that fire together is strengthened, and this strengthening is one of
the core operations of learning and memory. This biological understanding helped
artificial neuron researchers develop the perceptron, an artificial neuron that could learn
by the strengths of several weighted inputs. All neural networks fundamentally are
similar in form and function.

The individual processing units that make up a neural network are called nodes. A neural
network consists of a weighted, directional graph representing a set of nodes and the
connections between them. Unlike regular computational systems that are given a
predetermined set of instructions, neural networks cannot be preprogrammed to solve a
particular task. Instead, they must be trained on sample data that are chosen to
represent a particular problem. This training strengthens pathways between the various
nodes inside the network. The more data that follow a certain pattern, the more certain
pathways will be strengthened. Once trained, a neural network operates as a “black box”
function that accepts inputs comparable to the sample data, and returns outputs that will
be similar for corresponding inputs.

There are two ways to train a neural network. Data need to be converted to numeric form
with either method before it can be input into the network. In supervised learning, the
user must first collect the training data to be used. These data contain input variables
with known outputs. These are run through the network, and it then trains itself on the
relationship between the inputs and outputs. The other method, known as unsupervised
learning, uses only the input variables. This type of network is a bit different from a
supervised one in that it attempts to sort out the structure of the data on its own. Of the
two, supervised learning is the most common use of a neural network.

The ability to associate an input set with a learned output set makes neural networks
especially adept at control applications such as robotics. For example, a neural network

5

can be mapped with sensors as inputs and motors as outputs. A slightly modified neural
network can be trained on a sequence of data, such as the stock market, and used as a
predictor.

The strengths of using neural networks are also weaknesses in some ways. Neural
networks are used to create models of large and complex functions with large numbers of
variables where traditional linear modeling would fail. Linear models mainly apply where
a relationship is already known and the function is somewhat less complex and can be
optimized. A neural network is used where there is a suspected relationship between
inputs and outputs, but that relationship is not known and must be deduced inside the
network. The primary downside to using a neural network is that the network learns by
example, and the model it learns is not in any human usable format. The input variables
are converted into signals inside the network that then go through the various pathways
to create the output.

The neural network is often considered a “black box” in that it will produce an output, but
provides no explanation for the result and no guarantee that the output is correct.
Though neural networks are adept at modeling patterns in input sets, extracting any
information about the pattern is nearly impossible. For example, a neural network
designed to predict the weather would offer no explanation for its forecast. Furthermore,
when a prediction is incorrect, it is difficult to fix the inaccuracy, except by further training
the neural network. Neural networks are most often employed in systems involving
innumerable input sets, so testing a network to determine its accuracy is usually
impossible.

The goal of this project was to resolve these issues by extracting more information from a
neural network than is provided by its outputs. Conceivably, an algorithm could examine
a neural network and extract the function encoded in the network. This function should
return the same output vector as the neural network when both are presented with the
same input vector. The function should be easier to implement than the neural network
encoding, and should provide a model for analyzing the patterns within the input sets.
This information could then be used to generate mathematical relationships to model the
physical phenomena. While these may not be linear functions, they should at least allow
researchers to better understand the model generated by the neural network.

METHOD AND TESTING

Development Tools

To keep new development to a minimum, the Stuttgart Neural Network Simulator (SNNS)
was chosen as the base platform. This software was developed at the Institute for
Parallel and Distributed High Performance Systems at the University of Stuttgart for

6

simulating neural networks and has been in use for many years. Over time it has built up
a following and has had the code reviewed numerous times. This system provided a
stable base for the research work.

The software development platform was Mandrake Linux using the gcc compiler suite.
Some initial work had to be done to get SNNS working properly on the Linux distribution.
The software was written in an older style of the C programming language and contained
a few constructs that are no longer considered valid by modern compilers.

Data Collection

The first task was to provide climate data for Arkansas and Missouri to determine
possible causes for the spread of tularemia. The data needed were temperature, rain,
and snow data from 1990 to 2000. After receiving the data from NOAA, it was necessary
to convert the data from exact daily readings to a monthly average. This average was
necessary on a county-by-county basis as some counties had multiple NOAA reporting
stations, while others had none. County level tularemia data were also the finest
granularity in which the tularemia data were available.

Modifications to SNNS

The SNNS neural network model was first modified to send data packets instead of
digital signals. These data packets recorded various pieces of information as they run
from the inputs to the outputs of the neural network. For each current node, the data
packets would record the current node, what other nodes were connected to the current
node, the firing thresholds of each node based on connections to other nodes, and the
signal levels of each connected node when the current node fires. While these packets
added considerable overhead, they also allowed an in-depth study of the network while it
is in operation. These packets also helped to connect outputs to the inputs, so that given
input levels would be known when the network generated an output.

As SNNS provided a stable and well tested neural network system, work began by
making modifications to SNNS to test some of the initial theories about extracting
information from the network. First, however, the base version of SNNS had to be
regression tested to ensure that porting to Mandrake Linux did not result in any software
errors. For the first test, a simple neural network example, an OR gate, was created and
then used pre-existing files to train and test it. The results were as expected, so SNNS
was working with small networks.

Next, a larger network was tested. This network had a two-dimensional array of inputs
designed to represent each character of the alphabet, and output neurons for each letter.

7

Following an example file, the network was created, and test files were developed. After
training, the network worked as expected and the output matched the known outputs.
Since the first two tests were recreating previous examples, it was then decided to try a
modified example. To do this, the numbers zero through nine were added to the
alphabet network and the corresponding test cases were written. Training went well, with
the resulting network distinguishing between the alphabet and the numbers. Since all
three tests worked without a problem, SNNS was working correctly.

After verifying that SNNS was functioning correctly under Linux, work then began to
modify it for testing purposes. After studying SNNS, the areas of the source were
identified that needed to be modified: the low-level functions of SNNS – Test functions,
Learning functions, and Update functions. This was actually quite difficult as SNNS is a
very large code base and does not tend to follow modern software engineering practices.
The sheer number of functions that would have to be modified, however, forced a look at
other methods to modify the code. Instead of using the low level functions, the function
that calls them was modified. This greatly reduced the amount of code that would have
to be written, as well as having a lower overall impact on the operation of SNNS.

In implementing the data packet system, a linked list structure was written as well as the
structure that stores the packet data. The structures and the related functions are in the
source files r_tracking.h and r_tracking.c. Also, a global variable called master_list is
defined in r_tracking.h. From there, the SNNS files were modified. A new function called
create_list was added to kernel.c, which is called in kr_callNetworkFunctionSTD. Also,
the Unit structure, defined in kr_typ.h, was modified by adding unit_number, which stores
the ID number of the unit.

All these files function together as follows:

1. The network is modified or updated in some way, whether through learning,
testing, or adding/removing units or links.

2. SNNS calls the current update/learning/test function that is needed.

3. After the function finishes updating all the activations and outputs on the units in
the network, create_list is called.

4. create_list erases the current list, and rebuilds it using the new data. This list can
then be displayed in the packet list window mentioned below, as well as saved to
disk.

5. Finally, when the program exits, the list is erased completely.

Note that the list is created after the network is updated. Originally, it was thought that
the list needed to be built as the network was being updated, which is why originally it
seemed necessary to edit the lower level functions.

8

Once the packet tracking was working, more functionality was added to the SNNS
graphical user interface, since a way to view the packet list was needed. A new button
was added to the control window that brings up the packet list window. The packet list
window has a save button that allows the packet list to be saved to disk for further
analysis. There are still some issues with the packet list window, in that it cannot display
a list of packets over a certain size correctly. This is due to the nature of the X Window
System widget tool set used by SNNS.

After this work was complete, Phase II of the project began. This phase was to research
ways to automate data input into SNNS. While SNNS, like other neural networks, already
supports unsupervised training, unsupervised training alone is still a difficult process and
would require users to have some knowledge of how neural networks work. Since one of
the goals of this project was to find ways to automate the process and make it easier for
non-computer scientists, Phase II involved trying to find easier ways to do unsupervised
training.

For Phase II of the project, we only need the algorithms that deal with unsupervised
training. There are two popular algorithms, Kohonen and Art2, and they are already
implemented in SNNS. However, the software does not automatically output the result of
the clusters. SNNS had to be modified to extract the data that is necessary for analysis.

To train data using SNNS, it has to be fed a “pattern file” ending in .pat. There is an
example of the pattern file in “SNNSv4.1/examples/” directory. There are two kinds of
examples, one for supervised training and one for unsupervised training. If we look for
unsupervised training, the example is some_cute.pat with input but no output. The test
pattern file has to be generated in exactly the same format as some_cute.pat, otherwise it
will not work. Also, in “SNNSv4.1/examples/” there are files ending with net which are the
“network” files. On SNNS Manager Panel there is a button named BIGNET. This allows
selection of the preferred unsupervised training method: art1, art2, kohonen, and so on.
This selection means that the network file does not have to be manually generated and
loaded into SNNS. To train the data, the pattern file has to be loaded into the network
(land cover and climate data converted into pattern file format). After the network has
been created, pattern file loaded, and selected appropriate parameters and functions, we
are ready to train our data.

The software was modified to output data in a specific file named “winner_list.txt”. This
file contains a list of winners that are learned by some patterns. For the ART2 method,
patterns learned from the same winner have similar characteristics and so are considered
to belong to one group (cluster). For the Kohonen method, not only do the patterns that
are learned from the same winner have similar characteristics, but the patterns that are
learned from the winners around the neighborhood also have similar characteristics. The

9

DISPLAY button in SNNS Manager Panel allows us to view the screen display of each
training method.

After the data are clustered, we then examine their relationship to understand what
factors affect the spread of tularemia. The result data from Phase I can then be used for
supervised training. For this, we can use back_propagation. This time the patterns
contain both input and output. Input is land cover / weather data, and output in this case
is the number of tularemia cases. After several supervised trainings, the network will
form patterns and construct a model. The network file then has to be saved so that it can
then be used for the next step. The saved network file is loaded and fed in the data
(pattern file) with patterns that contain only “inputs” where we want to predict the output.
The important step is to cluster data and find attributes (water, grass, etc.) that play a role
in spreading tularemia.

SNNS was also modified to include a scripting engine so that the neural network interface
could be controlled from a text file. Over fifty SNNS interface commands were
implemented in the scripting language, allowing the user to automate the creation,
training, and testing of neural networks. This modification greatly expedited development
because functionality could be implemented within the scripting system rather than at the
GUI and kernel level within the SNNS source. Also, algorithms under development could
be tested much more efficiently, since a script could be written to create, test, and destroy
thousands of neural networks without any interaction from the user. The scripting system
also provides the potential to simplify end-user tasks by automating the training of
networks with minimal user interaction.

The Lua scripting language was chosen as the base language for the SNNS scripting
system after a speed and usability comparison between many different candidates,
including Perl, Ruby, and Python. Lua was judged to be the fastest and easiest to use
because of its efficient and simple open-source interpreter written in C. Lua is based on
Pascal, making it easy to learn, even for novice programmers.

Using the scripting system as a development framework, a novel genetic algorithm was
implemented to automatically produce neural networks with an optimal topography for a
given problem. This new algorithm is an improvement on the “cell division and migration”
method, which emulates the way natural nervous systems grow during the early
development of an organism (Cangelosi and others, 1994). One weakness in the original
cell division and migration algorithm is that it stops growing only after a predetermined
number of artificial neurons have spawned. The new algorithm implemented in SNNS
resolves this issue by allowing developing neurons to alter their virtual environment via
artificial chemical signals which tell neighboring neurons when to migrate and reproduce.
In this way, the algorithm can converge on a stable topography automatically. In other
words, the size, density, and topography of the generated network is determined by the

10

algorithm without any information from the user.

The algorithm attempts to simulate the biological process of nervous system growth and
development. The developing neurons migrate and reproduce on a large grid such that
each cell can contain at most one neuron. Neurons can move, reproduce, or release
chemical signals into adjacent cells. Each neuron maintains its own strand of artificial
DNA, which encodes when the neuron will move or release chemical signals. Some of
these chemicals act as artificial hormones that dictate when a neuron reproduces. By
consuming energy and releasing reproductive hormones into the proximate environment,
individual neurons can communicate and affect the overall growth of the network. This
novel algorithm more closely simulates natural neuron growth and produces an incredibly
diverse pool of convergent and stable networks. Furthermore, the algorithm will always
produce the same network from a given strand of DNA and so provides an excellent
method for encoding a neural network in a compact binary representation.

The following images represent a few networks evolved using the algorithm. Notice that
the algorithm is capable of producing feed-forward multilayer networks as well as densely
interconnected recurrent networks, depending on the problem set and fitness evaluation
function.

Figure 1: Two Dimensional Representation Figure 2: Three Dimensional Representation

The genetic algorithm can be modified via the scripting system to evolve feed-forward or
recurrent networks by enabling or disabling a built-in pruning algorithm. This allows a
single algorithm to grow optimized networks for most network architectures supported by
SNNS. While comparable genetic algorithms can take many hours to produce results,

11

the algorithm added to SNNS takes only a few seconds to evolve a population of several
hundred networks. Once a network has been evolved by the genetic algorithm, it can
then be trained, tested, and stored either manually or via the scripting language. By
programming a script to use the genetic algorithm and SNNS interface, thousands of
neural networks can be evolved, trained, tested, and analyzed autonomously.

Results

The following graphs illustrate the results from a sample run of the Kohonen
unsupervised clustering program. The input set comprised geographical data of various
counties that was normalized and clustered automatically by the algorithm. Several
groups were returned, two of which are compared below. Note that the algorithm made
an accurate distinction between these two groups despite their impressive similarity.

 Figure 3: Sample climate and tularemia clustering.

12

0

500000

1000000

1500000

2000000

2500000

3000000

group_1

Butler
Stoddard
Scott
Mississippi
Newmadrid
Permiscot
Dunklin
Atchison
Holt

 Figure 4: Second group clustering.

While these results are encouraging, they do not provide much insight into the inherent
relationships present in the data set. These data must be further processed to discover
any underlying patterns and rules. To do this automatically, a script could be written that
would evolve an optimized neural network and train it on the clustered data. Finally, the
relationships inherent in the network would be extracted using the packet tracing system
or some other data extraction algorithm.

DISCUSSION

Data collection for this project posed an interesting problem. Climate data from the
NOAA, Land Cover data from the USGS, and county-based disease data from the CDC
were easy to obtain. The spatial resolution of the disease data proved to be a problem
when making associations between variables. Privacy laws, however, prevented the use
of higher-resolution disease data.

Towards the end of this project it was decided to switch the data to modeling land use
change for another project in the Geography discipline. These data were more readily
available as it was being created by USGS scientists, and a member of the Land Cover
team was in the same section as the principal investigator. This project is model agnostic
in that it does not matter what is being modeled to develop the theory as “a model is a
model”.

During the research and development of this project, several alternative neural network
data extraction methods were studied, and the feasibility of each method was considered.
In addition to the packet tracking idea, one such method was the discretized interpretable
multilayer perceptron (Bologna). This modified neural network was designed to simplify
the data extraction process by ensuring that the domain is divided into discrete regions

13

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

group_5

Worth
Nodaway
Gentry
Harrison
Mercer
Adair
Grundy
Sullivan
Putnam
Linn
Clinton
Caldwell
Johnson
Dekalb

during the training process. This allows the algorithm to extract if..then implications that
can be used in lieu of the network. Bologna showed that his technique proved effective
for some data sets, but did not necessarily discover useful information about the domain.

If Bologna's modified neural network was implemented in SNNS, then the tools
developed during this project would become more powerful. Scripts could be written to
genetically evolve a discretized network, which could then be analyzed using the packet
tracking system. Raw geographic data could be normalized and clustered automatically
and fed to the evolved discretized network. Bologna's algorithm could be used to extract
interpretable if..then implications that realize the inherent rules governing the data set.

This approach raises some important questions, however: Are simplified rules-based
systems better models of a natural phenomenon then a black-box neural network? Is it
practical to expect well-defined rules to emerge from a neural network trained on a large
and noisy data set?

The first question arises from the fact that the rules extracted from a neural network are
usually simplified to eliminate irrelevant implications. In fact, an important part of
Bologna's network is a pruning algorithm. Bologna has shown that even after pruning,
his algorithm can produce rules that perfectly match the results of the trained discretized
network, but whether or not these rules are as accurate as a more traditional network
remains to be seen. It is possible that the discrete nature of Bologna's networks makes
them less efficient at learning large and complex geographic data sets, and it is likely that
the algorithm would produce too many rules for human interpretation if given an overly-
complicated data set.

The second question involves large and imperfect data sets where an underlying pattern
may or may not actually exist. Because the data set is not usually well understood, it is
nearly impossible to determine the accuracy of the rules extracted from a trained neural
network without testing the rules in a real-world environment. This assumes that such
underlying rules truly exist in the data set. For situations where little or no patterns can
be found, the algorithm should have a mechanism for rating its own results, and for giving
up when no results can be determined. Until these mechanisms are in place, it is
probably not practical to expect a discretized network to provide sensible interpretations
from a real-world data set.

FUTURE WORK

This project was closed at the end of FY2005 due to budget constraints, but there are
several areas of work that could be continued in the future. The first area is in combining

14

genetic algorithms and neural networks. Some work is currently(2005) being done to try
to get as much research completed as possible before the projects ends. Another
method for combining neural networks and genetic algorithms could be achieved by
having the genetic algorithm actually modify the individual nodes within a network while it
is running. This would be extremely difficult, but it might provide a better optimization of
the neural network. It might also make totally unsupervised training easier as the genetic
algorithm could continually adjust until outputs match known values.

Converting the output from the modified network into mathematical functions could also
be explored. Initially, work should focus on converting the data into step functions, as
this would be easier and would provide a better understanding of how to go from neural
pathways to functions. Once this is done, the step functions could be converted into
complex functions instead of simple linear ones.

Another task for future work could be looking at different neural network packages in
existence. When this project first began, SNNS was the only full featured package that
could be used for research purposes. Different offerings have recently (2005) become
available that might make a better fit for this work. SNNS follows a “kitchen sink”
approach in that it includes everything one might need while using a neural network.
SNNS is also “old code” that is becoming increasingly harder to maintain as new
generations of programmers are not familiar with older methods of writing code. A
smaller more targeted neural network system might make a better choice for this
research in the future as it would be easier to maintain and debug.

CONCLUSION

The primary focus of this project was to find ways to help scientists develop complex
models of physical phenomena via technology. Modern need and problems are creating
a demand for more complex and exact models of various phenomena. As our
understanding of the world grows, so does the number of variables that are considered
when developing a model. Automating the process can help researchers generate these
models much more easily than if done manually. Automating this process can also help
to speed model generation. This can be significant, as a phenomena might need to be
quickly modeled so that disaster planning and mitigation can be performed quickly.

Modeling the physical world requires a lot of data, and these data usually need to be
modified so that they will work together in a neural network. Experience from this project
has shown that to be accurate, data need to match the lowest common denominators of
items such as resolution, scale, accuracy, and so on. This is important as it will help
ensure that the output from the network will be accurate and make sense. Higher
resolution versions of one variable might skew results when combined with lower
resolution versions of another. This work can actually be fairly difficult, as it requires a lot

15

of reformatting and averaging of input variables.

Neural networks can be modified so that data can be more easily extracted from them.
These modifications include tracking what data travel to each node, firing levels of the
various nodes, connection between nodes, and so on. This allows data to be fully
tracked inside a network instead of the traditional “black box” model. Ideally, this
information can then be used to automate the generation of a mathematical model that
describes the relationships between various variables and what variables actually
contribute to the final result.

The most important part of this work is in automating the training process of the neural
network. While there are some preexisting methods of self training, new techniques such
as genetic algorithms must be added to allow users who are not technically trained in
using neural networks to benefit from them. This training allows users to input large sets
of variables and tune the operation of the network so that the output matches known
values. Computer science techniques such as genetic algorithms can be used to find the
global best network that matches said outputs without much user intervention. This is an
important step to bring the power of such computational techniques to non-computer
science researchers.

The work done for this project resulted in several useful extensions to SNNS. A packet
tracking system was implemented, enabling researchers to trace the flow of information
through a neural network in real-time. The Kohonen algorithm was extended with
support utilities for automatically clustering data sets into groups for further study. A
novel genetic algorithm was implemented to grow optimized neural networks. SNNS was
extended with an embedded scripting language for automation of tasks. With these tools
in place, the goal of automatic data extraction from trained neural networks is closer than
ever before.

16

REFERENCES

Bologna,Guido. "Rule Extraction from a Multi Layer Perceptron with Staircase Activation

Functions." IEEE-INNS-ENNS International Joint Conference on Neural

Networks (IJCNN'00) Volume 3. 2000.

Cangelosi, Angelo, Domenico Parisi and Stefano Nolfi. Cell Division and Migration in a

 'Genotype' for Neural Networks. Network. 1994.

Connected Graph. <http://dictionary.reference.com/search?q=connected%20graph>.

Dictionary.com. 2005.

Hebb, D.O. The Organization of Behavior. Wiley, New York. 1949.

Stergiou, Christos and Dimitrios Siganos. Neural Networks.

<http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html>.

Imperial College of London Department of Computing. 2005.

University of Tübingen. SNNS - Stuttgart Neural Network Simulator.

<http://www-ra.informatik.uni-tuebingen.de/SNNS/>. University of Tübingen.

2005.

17

http://dictionary.reference.com/search?q=connected%20graph
http://www-ra.informatik.uni-tuebingen.de/SNNS/
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

	CONTENTS
	ILLUSTRATIONS
	KEY WORDS
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	METHOD AND TESTING
	Development Tools
	Data Collection
	Modifications to SNNS
	Results

	DISCUSSION
	FUTURE WORK
	CONCLUSION
	REFERENCES

