As GPS became more popular, another problem came about. Map updates for these units were expensive. They were in proprietary formats and could only be used from a specific vendor for their units. Many units could not be updated at all. Even better, in some cases individual units could not share the same update. The updates were slow to incorporate all new areas. At one point, a popular GPS maker only employed a hand full of cartographers who were responsible for the entire world. As you can imagine, they could only do so much at any given time.
Some enterprising souls decided they wanted to try to convert their expensive data from their proprietary GIS packages and put them on their GPSs. After some reverse engineering they actually managed to get data into a format so they could put maps on their GPS units. Even then the GIS data sets were not current for everywhere as the vendors focused on popular areas.
This approach had a few problems. First, there were not that many people who had the skills and software available to do the GPS reverse engineering and convert the vendor data sets to use with them. The commercial GIS data were not necessarily any better than the GPS data in terms of being up to date. Plus, everything was proprietary. The GPS and GIS data were owned by vendors who would go after people if they even thought about making data available for free to anyone who had not bought a license. So even if you had access to the GIS data and tools, you could only update your own GPS and not post the files online for people to download. And you were likely violating some license agreement even if you only used it for yourself.
If fact, the vendors were very aggressive about protecting their data and took action against anyone who violated their copyright. Early web map companies would introduce errors into their data sets in an attempt to watermark them so they would know when someone was illegally using them. This was before the days of widespread in-car GPS units and Google or NAVTEQ cars driving around recording roads with GPS precision and accuracy. With closed software and data, no one really had to worry about accuracy for the casual user.
Open Source Comes to the Table
The frustrations with proprietary vendors and data sets started a small cottage industry of developers who wanted to give everyone access to the same types of tools that the commercial vendors had. In the commercial GIS space there were only one or two real sellers of GIS software. This monopoly led to stagnant development and large monolithic software programs. These Open Source developers wanted to write new tools that everyone could use to manipulate what free data was out there. They wrote libraries such as GDAL, libgeotiff, and others to provide access to the various file formats. The tools followed to allow users to do simple manipulations of geospatial data.
Now that people had tools, they wanted data to work on. Data at this time was scarce, mainly reposted USGS Digital Raster Graphics (scanned paper maps) and Digital Orthophotos (aerial photographs) in the raster data space. The US Census made their TIGER vector map data (think roads) available for download, but early on it had issues with spatial accuracy and was hard to work with unless the user spent time converting it to work in their GIS. The USGS also had some vector data for hydrography and transportation data but was also somewhat difficult to use due to the formats in which it was distributed.
People at this time had been doing various things with GPS units and early GIS tools to make data available. Some people posted GPS tracks of trails for others to go hiking on. Geocaching had caught on in a big way and introduced a lot of people to the convenience of a GPS. Moving map display GPS units allowed people to navigate roads without need for a paper map. More and more people began wanting up to date data for their devices, and they did not want to pay the expensive prices the commercial vendors wanted.
The explosion in GPS use and availability of Open Source tools to use it led to outcries of people who wanted more data so they could keep their GPS units up to date or just play with photos of their neighborhoods. Technology had evolved to the point where computers could more easily manipulate the large raster data sets that were out there. Eventually governments began to make more data available to the tax payers who felt they paid for it once so should not pay again to download it. The USGS made DRGs and DOQs available for free. The TIGER vector data got a lot more accurate and was updated on a much more regular basis. But still, a lot of the data was not current or up to date since there was only so much money spent by governments on mapping programs.
Along comes the OpenStreetMap (OSM) project in 2004 with the goal of creating a free base map of the world. OSM came out in the early years of the social media craze and provided a collaborative platform so people could add mapping data through either GPS traces or by volunteering their time to vectorize satellite photos. Suddenly, people all over the world could contribute to creating free maps of their areas and use the data however they wanted to use them. Combined with more and more governments providing their data free to download, we came to the modern era where we have more GIS data available than ever before.
Where are we Now?
To be superfluous, we’re now in a golden age of Open Source GIS tools and open data. The very capable QGIS application has recently hit version 2.0. OpenStreetMap continues to grow and is up to a compressed 30 gigabyte file with high-resolution user-contributed data under an open license. Toolkits and libraries such as GDAL power many Open Source and even some commercial applications. Many cars now come with GPS units built-into the dash. Cell phones with 3G+ data connections and mapping apps from Google, Apple, and others have caused traditional GPS companies such as Garmin to scramble to determine their future relevance. Anyone can now take Open Source tools and convert open data to update maps in their GPSs. Web map services using open standards make even more data available to web browsers and other applications. Times have gone from a scarcity of geospatial data to so much that management and discovery of it has become difficult due to the volume and number of providers.
Next time we’ll take a look at the Open Source tools of the trade that anyone can download and use.